Abstract

We investigate solutions to a nonlinear integral equation which has a central role in implementing the non-Abelian Gauss's Law and in constructing gauge-invariant quark and gluon fields. Here we concern ourselves with solutions to this same equation that are not operator-valued, but are functions of spatial variables and carry spatial and SU(2) indices. We obtain an expression for the gauge-invariant gauge field in two-color QCD, define an index that we will refer to as the ``winding number'' that characterizes it, and show that this winding number is invariant to a small gauge transformation of the gauge field on which our construction of the gauge-invariant gauge field is based. We discuss the role of this gauge field in determining the winding number of the gauge-invariant gauge field. We also show that when the winding number of the gauge field is an integer $\ell{\neq}0$, the gauge-invariant gauge field manifests winding numbers that are not integers, and are half-integers only when $\ell=0$.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.