Abstract

We examine a nonlocal interaction that results from expressing the QCD Hamiltonian entirely in terms of gauge-invariant quark and gluon fields. The interaction couples one quark color-charge density to another, much as electric charge densities are coupled to each other by the Coulomb interaction in QED. In QCD, this nonlocal interaction also couples quark color-charge densities to gluonic color. We show how the leading part of the interaction between quark color-charge densities vanishes when the participating quarks are in a color singlet configuration, and that, for singlet configurations, the residual interaction weakens as the size of a packet of quarks shrinks. Because of this effect, color-singlet packets of quarks should experience final state interactions that increase in strength as these packets expand in size. For the case of an SU(2) model of QCD based on the ansatz that the gauge-invariant gauge field is a hedgehog configuration, we show how the infinite series that represents the nonlocal interaction between quark color-charge densities can be evaluated nonperturbatively, without expanding it term-by-term. We discuss the implications of this model for QCD with SU(3) color and a gauge-invariant gauge field determined by QCD dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.