Abstract

Multilayer networks have permeated all areas of science as an abstraction for interdependent heterogeneous complex systems. However, describing such systems through a purely graph-theoretic formalism presupposes that the interactions that define the underlying infrastructures are only pairwise-based, a strong assumption likely leading to oversimplification. Most interdependent systems intrinsically involve higher-order intra- and inter-layer interactions. For instance, ecological systems involve interactions among groups within and in-between species, collaborations and citations link teams of coauthors to articles and vice versa, and interactions might exist among groups of friends from different social networks. Although higher-order interactions have been studied for monolayer systems through the language of simplicial complexes and hypergraphs, a systematic formalism incorporating them into the realm of multilayer systems is still lacking. Here, we introduce the concept of crossimplicial multicomplexes as a general formalism for modeling interdependent systems involving higher-order intra- and inter-layer connections. Subsequently, we introduce cross-homology and its spectral counterpart, the cross-Laplacian operators, to establish a rigorous mathematical framework for quantifying global and local intra- and inter-layer topological structures in such systems. Using synthetic and empirical datasets, we show that the spectra of the cross-Laplacians of a multilayer network detect different types of clusters in one layer that are controlled by hubs in another layer. We call such hubs spectral cross-hubs and define spectral persistence as a way to rank them, according to their emergence along the spectra. Our framework is broad and can especially be used to study structural and functional connectomes combining connectivities of different types and orders.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.