Abstract

We present results on QCD with four dynamical flavors in the temperature range 0.9≲T/Tc≲2. We have performed lattice simulations with Wilson fermions at maximal twist and measured the topological charge with gluonic and fermionic methods. The topological charge distribution is studied by means of its cumulants, which encode relevant properties of the QCD axion, a plausible Dark Matter candidate. The topological susceptibility measured with the fermionic method exhibits a power-law decay for T/Tc≳2, with an exponent close to the one predicted by the Dilute Instanton Gas Approximation (DIGA). Close to Tc the temperature dependent effective exponent approaches the DIGA result from above, in agreement with recent analytic calculations. These results constrain the axion window, once an assumption on the fraction of axions contributing to Dark Matter is made.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.