Abstract

This paper surveys topologies, called admissible group topologies, of the full group of self-homeomorphisms <svg style="vertical-align:-2.3205pt;width:42.299999px;" id="M1" height="15.0875" version="1.1" viewBox="0 0 42.299999 15.0875" width="42.299999" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.062,12.138)"><path id="x210B" d="M702 678l12 -14l-18 -14q-124 -96 -232 -310q25 10 62 21l53 18l33 43q101 126 187 195q88 70 135 70q57 0 57 -50q0 -78 -98 -145q-86 -58 -206 -105q-174 -251 -174 -334q0 -15 9.5 -25t24.5 -10q55 0 167 129l21 -13q-120 -146 -202 -146q-39 0 -63 24t-24 65&#xA;q0 101 104 262l-107 -41q-56 -110 -132 -193q-75 -82 -145 -109q-31 -11 -56 -11t-41 16.5t-16 43.5q0 129 283 247q17 29 20 33l22 36q1 2 9 13.5l14 20.5q18 28 59 77q34 39 87 86q-5 -1 -20 -1q-44 0 -124 44q-62 34 -102 34q-48 0 -82 -31q-34 -30 -34 -70q0 -44 22 -69&#xA;t66 -25q37 0 65 20.5t56 65.5l18 -9q-54 -107 -141 -107q-59 0 -93 34.5t-34 91.5q0 58 50 105q49 46 125 46q28 0 58 -11q35 -13 84 -38q59 -31 86 -31q42 0 80 19q16 9 42 28zM958 635q0 22 -24 22q-28 0 -86 -63q-56 -60 -128 -160q238 105 238 201zM307 241&#xA;q-110 -50 -165.5 -98t-55.5 -99q0 -24 24 -29q67 0 197 226z" /></g><g transform="matrix(.017,-0,0,-.017,17.01,12.138)"><path id="x28" d="M300 -147l-18 -23q-106 71 -159 185.5t-53 254.5v1q0 139 53 252.5t159 186.5l18 -24q-74 -62 -115.5 -173.5t-41.5 -242.5q0 -130 41.5 -242.5t115.5 -174.5z" /></g><g transform="matrix(.017,-0,0,-.017,22.892,12.138)"><path id="x1D44B" d="M775 650l-6 -28q-60 -6 -81.5 -16t-61.5 -54l-175 -191l125 -243q30 -58 48.5 -71t82.5 -19l-5 -28h-275l7 28l35 4q31 4 37 12t-6 34l-108 216q-140 -165 -177 -219q-16 -22 -10.5 -30.5t41.5 -13.5l22 -3l-7 -28h-244l8 28q52 4 75 15.5t67 52.5q48 46 206 231&#xA;l-110 215q-26 51 -44 63t-72 17l6 28h250l-6 -28l-27 -4q-30 -5 -35 -10t3 -27q17 -43 95 -190q70 78 154 185q15 21 10 29.5t-33 12.5l-30 4l5 28h236z" /></g><g transform="matrix(.017,-0,0,-.017,36.355,12.138)"><path id="x29" d="M275 270q0 -296 -211 -440l-19 23q75 62 116.5 174t41.5 243t-42 243t-116 173l19 24q211 -144 211 -440z" /></g> </svg> of a Tychonoff space <svg style="vertical-align:-0.0pt;width:13.5875px;" id="M2" height="11.175" version="1.1" viewBox="0 0 13.5875 11.175" width="13.5875" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.062,11.113)"><use xlink:href="#x1D44B"/></g> </svg>, which yield continuity of both the group operations and at the same time provide continuity of the evaluation function or, in other words, make the evaluation function a group action of <svg style="vertical-align:-2.3205pt;width:42.299999px;" id="M3" height="15.0875" version="1.1" viewBox="0 0 42.299999 15.0875" width="42.299999" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.062,12.138)"><use xlink:href="#x210B"/></g><g transform="matrix(.017,-0,0,-.017,17.01,12.138)"><use xlink:href="#x28"/></g><g transform="matrix(.017,-0,0,-.017,22.892,12.138)"><use xlink:href="#x1D44B"/></g><g transform="matrix(.017,-0,0,-.017,36.355,12.138)"><use xlink:href="#x29"/></g> </svg> on <svg style="vertical-align:-0.0pt;width:13.5875px;" id="M4" height="11.175" version="1.1" viewBox="0 0 13.5875 11.175" width="13.5875" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.062,11.113)"><use xlink:href="#x1D44B"/></g> </svg>. By means of a compact extension procedure, beyond local compactness and in two essentially different cases of rim-compactness, we show that the complete upper-semilattice <svg style="vertical-align:-3.27605pt;width:52.487499px;" id="M5" height="16.275" version="1.1" viewBox="0 0 52.487499 16.275" width="52.487499" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.062,12.137)"><path id="x2112" d="M608 643l-12 -19q-56 33 -145 33q-87 0 -154 -42q-68 -42 -68 -115q0 -74 66 -116q67 -42 176 -42q21 0 63 5l29 56q34 66 57 103q43 65 106 113q65 50 122 50q41 0 62 -22t21 -60q0 -67 -87 -144q-88 -76 -217 -110q-46 -101 -119 -186q-72 -83 -136 -108&#xA;q71 -23 103 -23q141 0 265 139l19 -14q-131 -156 -281 -156q-84 0 -164 30q-70 -24 -155 -24q-126 0 -126 61q0 24 30 40.5t78 16.5q42 0 85 -16q18 -6 46 -18q26 -11 42 -16q41 26 99 98q58 70 105 158q-26 -3 -53 -3q-50 0 -96.5 10.5t-88.5 31.5t-67 60t-25 90&#xA;q0 78 73 130q74 53 182 53q98 0 165 -44zM890 588q0 44 -49 44q-55 0 -109 -80q-54 -81 -89 -183q46 12 104 45q64 35 103.5 81t39.5 93zM266 35v1q-73 43 -125 43q-67 0 -67 -25q0 -33 87 -33q65 0 105 14z" /></g> <g transform="matrix(.012,-0,0,-.012,16.137,16.212)"><path id="x1D43B" d="M865 650q-1 -4 -4 -14t-4 -14q-62 -5 -77 -19.5t-29 -82.5l-74 -394q-12 -61 -0.5 -77t75.5 -21l-6 -28h-273l8 28q64 5 82 21t29 76l36 198h-380l-37 -197q-11 -64 0.5 -78.5t79.5 -19.5l-6 -28h-268l6 28q60 6 75.5 21.5t26.5 76.5l75 394q13 66 2 81.5t-77 20.5l8 28&#xA;h263l-6 -28q-58 -5 -75.5 -21t-30.5 -81l-26 -153h377l29 153q12 67 2 81t-74 21l5 28h268z" /></g> <g transform="matrix(.017,-0,0,-.017,27.2,12.137)"><use xlink:href="#x28"/></g><g transform="matrix(.017,-0,0,-.017,33.082,12.137)"><use xlink:href="#x1D44B"/></g><g transform="matrix(.017,-0,0,-.017,46.545,12.137)"><use xlink:href="#x29"/></g> </svg> of all admissible group topologies on <svg style="vertical-align:-2.3205pt;width:42.299999px;" id="M6" height="15.0875" version="1.1" viewBox="0 0 42.299999 15.0875" width="42.299999" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.062,12.138)"><use xlink:href="#x210B"/></g><g transform="matrix(.017,-0,0,-.017,17.01,12.138)"><use xlink:href="#x28"/></g><g transform="matrix(.017,-0,0,-.017,22.892,12.138)"><use xlink:href="#x1D44B"/></g><g transform="matrix(.017,-0,0,-.017,36.355,12.138)"><use xlink:href="#x29"/></g> </svg> admits a least element, that can be described simply as a set-open topology and contemporaneously as a uniform topology. But, then, carrying on another efficient way to produce admissible group topologies in substitution of, or in parallel with, the compact extension procedure, we show that rim-compactness is not a necessary condition for the existence of the least admissible group topology. Finally, we give necessary and sufficient conditions for the topology of uniform convergence on the bounded sets of a local proximity space to be an admissible group topology. Also, we cite that local compactness of <svg style="vertical-align:-0.0pt;width:13.5875px;" id="M7" height="11.175" version="1.1" viewBox="0 0 13.5875 11.175" width="13.5875" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.062,11.113)"><use xlink:href="#x1D44B"/></g> </svg> is not a necessary condition for the compact-open topology to be an admissible group topology of <svg style="vertical-align:-2.3205pt;width:42.299999px;" id="M8" height="15.0875" version="1.1" viewBox="0 0 42.299999 15.0875" width="42.299999" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.062,12.138)"><use xlink:href="#x210B"/></g><g transform="matrix(.017,-0,0,-.017,17.01,12.138)"><use xlink:href="#x28"/></g><g transform="matrix(.017,-0,0,-.017,22.892,12.138)"><use xlink:href="#x1D44B"/></g><g transform="matrix(.017,-0,0,-.017,36.355,12.138)"><use xlink:href="#x29"/></g> </svg>.

Highlights

  • The “incipit” of the homeomorphism group theory resides in the early seminal work of Birkoff [1]

  • With an apparent simplicity joined with an impressive bright proof strategy, Birkoff positively answered to the query: there exists a topology on the full self-homeomorphism group H(X) of a compact metric space X which makes it into a topological group and a subspace of the Hilbert cube? The area, originating from [1], has initially evolved relaxing the compactness condition by passing from the class of compact metric spaces, as in Birkoff, to the class of T2 locally compact spaces, as in Arens [2]

  • Birkoff and Arens, we focused our investigation on topologies which make H(X) a topological group and the evaluation function a group action of H(X) on X and, rather obviously, looked at uniform topologies

Read more

Summary

Di Concilio

This paper surveys topologies, called admissible group topologies, of the full group of self-homeomorphisms H(X) of a Tychonoff space X, which yield continuity of both the group operations and at the same time provide continuity of the evaluation function or, in other words, make the evaluation function a group action of H(X) on X. By means of a compact extension procedure, beyond local compactness and in two essentially different cases of rim-compactness, we show that the complete upper-semilattice LH(X) of all admissible group topologies on H(X) admits a least element, that can be described as a set-open topology and contemporaneously as a uniform topology. Carrying on another efficient way to produce admissible group topologies in substitution of, or in parallel with, the compact extension procedure, we show that rim-compactness is not a necessary condition for the existence of the least admissible group topology. We give necessary and sufficient conditions for the topology of uniform convergence on the bounded sets of a local proximity space to be an admissible group topology. We cite that local compactness of X is not a necessary condition for the compact-open topology to be an admissible group topology of H(X)

Introduction
Background and Works
Closeness by Covers
Closeness by Real Functions in the Metric Case
Closeness by Metrics
Compact Extension Procedure
The Rational Case
Group Action on 0-Dimensional Spaces and Completeness
Fine Group Topologies
Locally Compact Extension Procedure

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.