Abstract

We analyze a suitable definition of Köthe dual for spaces of integrable functions with respect to vector measures defined onδ-rings. This family represents a broad class of Banach lattices, and nowadays it seems to be the biggest class of spaces supported by integral structures, that is, the largest class in which an integral representation of some elements of the dual makes sense. In order to check the appropriateness of our definition, we analyze how far the coincidence of the Köthe dual with the topological dual is preserved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.