Abstract

Photonic topological systems, the electromagnetic analog of the topological materials in condensed matter physics, create many opportunities to design optical devices with novel properties. We present an experimental realization of the bi-anisotropic meta waveguide photonic system replicating both quantum Hall (QH) and quantum spin-Hall (QSH) topological insulating phases. With careful design, a composite QH-QSH photonic topological material is created and experimentally shown to support reflection-free edgemodes, a heterogeneous topological structure that is unprecedented in condensed matter physics. The effective spin degree of freedom of such topologically protected modes determines their unique pathways through these systems, free from backscattering and able to travel around sharp corners. {As an example of their novel properties, we experimentally demonstrate reflection-less photonic devices including a 2-port isolator, a unique 3-port topological device, and a full 4-port circulator based on composite QH and QSH structures

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.