Abstract
We obtain a Lorentzian solution for the topologically massive non-Abelian gauge theory on AdS space [Formula: see text] by means of an SU (1, 1) gauge transformation of the previously found Abelian solution. There exists a natural scale of length which is determined by the inverse topological mass ν ~ ng2. In the topologically massive electrodynamics the field strength locally determines the gauge potential up to a closed 1-form via the (anti-)self-duality equation. We introduce a transformation of the gauge potential using the dual field strength which can be identified with an Abelian gauge transformation. Then we present map [Formula: see text] including the topological mass which is the Lorentzian analog of the Hopf map. This map yields a global decomposition of [Formula: see text] as a trivial [Formula: see text] bundle over the upper portion of the pseudosphere [Formula: see text] which is the Hyperboloid model for the Lobachevski geometry. This leads to a reduction of the Abelian field equation onto [Formula: see text] using a global section of the solution on [Formula: see text]. Then we discuss the integration of the field equation using the Archimedes map [Formula: see text]. We also present a brief discussion of the holonomy of the gauge potential and the dual field strength on [Formula: see text].
Submitted Version (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have