Abstract

We introduce a general method to construct one-dimensional translationally invariant valence bond solid states with a built-in Lie group $G$ and derive their matrix product representations. The general strategies to find their parent Hamiltonians are provided so that the valence bond solid states are their unique ground states. For quantum integer spin-$S$ chains, we discuss two topologically distinct classes of valence bond solid states: One consists of two virtual SU(2) spin-$J$ variables in each site and another is formed by using two $SO(2S+1)$ spinors. Among them, a new spin-1 fermionic valence bond solid state, its parent Hamiltonian, and its properties are discussed in detail. Moreover, two types of valence bond solid states with SO(5) symmetry are further generalized and their respective properties are analyzed as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.