Abstract

Abstract Heterostructures play a pivotal role in the design of valley-locked waveguides, facilitating the manipulation of width as an additional degree of freedom. Through this design, we demonstrate the extension of the topological guided modes from the domain wall of topologically nontrivial valley photonic crystals (VPCs) into the trivial VPCs. We propose a C4 impurity to control the states of the light wave transmission in topological valley-locked waveguides through the intervalley scattering of defects in Quantum Valley Spin Hall topological insulators. By rotating the C4 structure, the ON/OFF (0°/45°) state of the valley-locked waveguides can be controlled, effectively serving as a switch component. Furthermore, many unique applications could be devised based on the introduced impurity. Examples include the development of coding channels with arbitrary output ports and energy concentrators with enhanced secondary concentration. The proposed topological valley-locked waveguides with C4 impurity will be beneficial for on-chip integrated photonic networks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.