Abstract

We study a generalized quantum spin ladder with staggered long range interactions that decay as a power-law with exponent \alphaα. Using large scale quantum Monte Carlo (QMC) and density matrix renormalization group (DMRG) simulations, we show that this model undergoes a transition from a rung-dimer phase characterized by a non-local string order parameter, to a symmetry broken N'eel phase. We find evidence that the transition is second order. In the magnetically ordered phase, the spectrum exhibits gapless modes, while excitations in the gapped phase are well described in terms of triplons – bound states of spinons across the legs. We obtain the momentum resolved spin dynamic structure factor numerically and find a well defined triplon band that evolves into a gapless magnon dispersion across the transition. We further discuss the possibility of deconfined criticality in this model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.