Abstract

Fine resolution of the discrete eigenvalues at the spectral edge of an N× NN×N random matrix is required in many applications. Starting from a finite-size scaling ansatz for the Stieltjes transform of the maximum likelihood spectrum, we demonstrate that the scaling function satisfies a first-order ODE of the Riccati type. Further transformation yields a linear second-order ODE for the characteristic function, whose nodes determine leading eigenvalues. Using this technique, we examine in detail the spectral crossover of the annealed Sherrington-Kirkpatrick (SK) spin glass model, where a gap develops below a critical temperature. Our analysis provides analytic predictions for the finite-size scaling of the spin condensation phenomenon in the annealed SK model, validated by Monte Carlo simulations. Deviation of scaling amplitudes from their predicted values is observed in the critical region due to eigenvalue fluctuations. More generally, rescaling the spectral axis, adjusted to the distance of neighboring eigenvalues, offers a powerful approach to handling singularities in the infinite size limit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.