Abstract
We consider certain quantum spectral problems appearing in the study of local Calabi-Yau geometries. The quantum spectrum can be computed by the Bohr-Sommerfeld quantization condition for a period integral. For the case of small Planck constant, the periods are computed perturbatively by deformation of the Omega background parameters in the Nekrasov-Shatashvili limit. We compare the calculations with the results from the standard perturbation theory for the quantum Hamiltonian. There have been proposals in the literature for the non-perturbative contributions based on singularity cancellation with the perturbative contributions. We compute the quantum spectrum numerically with some high precisions for many cases of Planck constant. We find that there are also some higher order non-singular non-perturbative contributions, which are not captured by the singularity cancellation mechanism. We fix the first few orders formulas of such corrections for some well known local Calabi-Yau models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.