Abstract
We propose an experimentally feasible nanophotonic platform for exploring many-body physics in topological quantum optics. Our system is composed of a two-dimensional lattice of nonlinear quantum emitters with optical transitions embedded in a photonic crystal slab. The emitters interact through the guided modes of the photonic crystal, and a uniform magnetic field gives rise to large topological band gaps, robust edge states, and a nearly flat band with a nonzero Chern number. The presence of a topologically nontrivial nearly flat band paves the way for the realization of fractional quantum Hall states and fractional topological insulators in a topological quantum optical setting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.