Abstract

AbstractValley pseudospin, a new degree of freedom in photonic lattices, provides an intriguing way to manipulate photons and enhance the robustness of optical networks. Here, topological waveguiding, refracting, resonating, and routing of valley‐polarized photons in integrated circuits are experimentally demonstrated. Specifically, it is shown that at the domain wall between photonic crystals of different topological valley phases, there exists a topologically protected valley kink state that is backscattering‐free at sharp bends and terminals. These valley kink states are further harnessed for constructing high‐Q topological photonic crystal cavities with tortuously shaped cavity geometries. A novel optical routing scheme at an intersection of multiple valley kink states is also demonstrated, where light splits counterintuitively due to the valley pseudospin of photons. These results can not only lead to robust optical communication and signal processing, but also open the door for fundamental research of topological photonics in areas such as lasing, quantum photon‐pair generation, and optomechanics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.