Abstract

We present a theory on the quantum phase diagram of AB-stacked MoTe_{2}/WSe_{2} using a self-consistent Hartree-Fock calculation performed in the plane-wave basis, motivated by the observation of topological states in this system. At filling factor ν=2 (two holes per moiré unit cell), Coulomb interaction can stabilize a Z_{2} topological insulator by opening a charge gap. At ν=1, the interaction induces three classes of competing states, spin density wave states, an in-plane ferromagnetic state, and a valley polarized state, which undergo first-order phase transitions tuned by an out-of-plane displacement field. The valley polarized state becomes a Chern insulator for certain displacement fields. Moreover, we predict a topological charge density wave forming a honeycomb lattice with ferromagnetism at ν=2/3. Future directions on this versatile system hosting a rich set of quantum phases are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call