Abstract

We discuss the non-Abelian topological objects, in particular the non-Abrikosov vortex and the magnetic knot made of the twisted non-Abrikosov vortex, in two-gap superconductor. We show that there are two types of non-Abrikosov vortex in Ginzburg-Landau theory of two-gap superconductor, the D-type which has no concentration of the condensate at the core and the N-type which has a non-trivial profile of the condensate at the core, under a wide class of realistic interaction potential. We prove that these non-Abrikosov vortices can have either integral or fractional magnetic flux, depending on the interaction potential. We show that they are described by the non-Abelian topology π2(S 2) and π1(S 1), in addition to the well-known Abelian topology π1(S 1). Furthermore, we discuss the possibility to construct a stable magnetic knot in two-gap superconductor by twisting the non-Abrikosov vortex and connecting two periodic ends together, whose knot topology π3(S 2) is described by the Chern-Simon index of the electromagnetic potential. We argue that similar topological objects may exist in multi-gap or multi-layer superconductors and multi-component Bose-Einstein condensates and superfluids, and discuss how these topological objects can be constructed in MgB2, Sr2RuO4, 3He, and liquid metallic hydrogen.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call