Abstract
We establish the existence of topologically stable knot in two-gap superconductor whose topology $\pi_3(S^2)$ is fixed by the Chern-Simon index of the electromagnetic potential. We present a helical magnetic vortex solution in Ginzburg-Landau theory of two-gap superconductor which has a non-vanishing condensate at the core, and identify the knot as a twisted magnetic vortex ring made of the helical vortex. We discuss how the knot can be constructed in the recent two-gap $\rm MgB_2$ superconductor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.