Abstract
Collaborative filtering is a well-known technique for recommender systems. Collaborative filtering models use the available preferences of a group of users to make recommendations or predictions of the unknown preferences for other users. Collaborative filtering suffers from the data sparsity problem when users only rate a small set of items which makes the computation of users similarity imprecise and reduce consequently the accuracy of the recommended items. Clustering techniques include multiplex network clustering can be used to deal with this problem. In this paper, we propose a collaborative filtering system based on clustering multiplex network that predict the rate value that a user would give to an item. This approach looks, in a first step, for users having the same behavior or sharing the same characteristics. Then, use the ratings from those similar users found in the first step to predict other ratings. The proposed approach has been validated on MovieLens dataset and the obtained results have shown very promising performances.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.