Abstract

Different types of cells exhibit a universal power-law rheology, but the mechanism underneath is still unclear. Based on the exponential distribution of actin filament length, we treat the cell cortex as a collection of chains of crosslinkers with exponentially distributed binding energy, and show that the power-law exponent of its stress relaxation should scale with the chain length. Through this model, we are able to explain how the exponent can be regulated by the crosslinker number and imposed strain during cortex relaxation. Network statistics show that the average length of filament-crosslinker chains decreases with the crosslinker number, which endows a denser network with lower exponent. Due to gradual molecular alignment with the stretch direction, the number of effectively stretched crosslinkers in the network is found to increase with the imposed strain. This effective growth in network density diminishes the exponent under large strain. By incorporating the inclined angle of crosslinkers into the model without in-series structure, we show that the exponent cannot be altered by crosslinker rotation directly, refining our previous conjectures. This work may help to understand cellular mechanics from the molecular perspective.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.