Abstract

AbstractThe nonlinear stress relaxation of a nearly monodisperse, moderately entangled polystyrene solution (i.e., roughly seven entanglements per chain at equilibrium) in single step‐strain flow is investigated quantitatively by a detailed comparison of an existing set of experimental data with a simulation based on the tube model. The proposed simulation enables the effects of primary nonlinear relaxation mechanisms other than chain retraction to be identified more clearly and investigated individually. Two peculiar nonlinear relaxation behaviors are observed in this experiment. One is concerned with an apparent enhancement in the stress relaxation at short times, and the other is responsible for a seeming slowdown of the stress relaxation at long times. These findings are discussed within the tube model, in view of the effects of convective constraint release, partial strand extension, and nonaffine deformation. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1281–1293, 2003

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call