Abstract

Converting wearable sensor data to actionable health insights has witnessed large interest in recent years. Deep learning methods have been utilized in and have achieved a lot of successes in various applications involving wearables fields. However, wearable sensor data has unique issues related to sensitivity and variability between subjects, and dependency on sampling-rate for analysis. To mitigate these issues, a different type of analysis using topological data analysis has shown promise as well. Topological data analysis (TDA) captures robust features, such as persistence images (PI), in complex data through the persistent homology algorithm, which holds the promise of boosting machine learning performance. However, because of the computational load required by TDA methods for large-scale data, integration and implementation has lagged behind. Further, many applications involving wearables require models to be compact enough to allow deployment on edge-devices. In this context, knowledge distillation (KD) has been widely applied to generate a small model (student model), using a pre-trained high-capacity network (teacher model). In this paper, we propose a new KD strategy using two teacher models - one that uses the raw time-series and another that uses persistence images from the time-series. These two teachers then train a student using KD. In essence, the student learns from heterogeneous teachers providing different knowledge. To consider different properties in features from teachers, we apply an annealing strategy and adaptive temperature in KD. Finally, a robust student model is distilled, which utilizes the time series data only. We find that incorporation of persistence features via second teacher leads to significantly improved performance. This approach provides a unique way of fusing deep-learning with topological features to develop effective models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.