Abstract

We provide a uniform vanishing result for the graded components of the finite length Koszul module associated to a subspace K⊆∧2V as well as a sharp upper bound for its Hilbert function. This purely algebraic statement has interesting applications to the study of a number of invariants associated to finitely generated groups, such as the Alexander invariants, the Chen ranks, and the degree of growth and virtual nilpotency class. For instance, we explicitly bound the aforementioned invariants in terms of the first Betti number for the maximal metabelian quotients of (1) the Torelli group associated to the moduli space of curves, (2) nilpotent fundamental groups of compact Kähler manifolds, and (3) the Torelli group of a free group.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.