Abstract

We study one-dimensional, interacting, gapped fermionic systems described by variants of the Peierls-Hubbard model, and we characterize their phases via a topological invariant constructed out of their Green's functions. We demonstrate that the existence of topologically protected, zero-energy states at the boundaries of these systems can be tied to the value of the topological invariant, just like when working with the conventional, noninteracting topological insulators. We use a combination of analytical methods and the numerical density matrix renormalization group method to calculate the values of the topological invariant throughout the phase diagrams of these systems, thus deducing when topologically protected boundary states are present. We are also able to study topological states in spin systems because, deep in the Mott insulating regime, these fermionic systems reduce to spin chains. In this way, we associate the zero-energy states at the end of an antiferromagnetic spin-1 Heisenberg chain with a topological invariant equal to 2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.