Abstract

The spatial organization of the genome is intimately linked to its biological function, yet our understanding of higher order genomic structure is coarse, fragmented and incomplete. In the nucleus of eukaryotic cells, interphase chromosomes occupy distinct chromosome territories (CT), and numerous models have been proposed for how chromosomes fold within CTs1. These models, however, provide only few mechanistic details about the relationship between higher order chromatin structure and genome function. Recent advances in genomic technologies have led to rapid revolutions in the study of 3D genome organization. In particular, Hi-C has been introduced as a method for identifying higher order chromatin interactions genome wide2. In the present study, we investigated the 3D organization of the human and mouse genomes in embryonic stem cells and terminally differentiated cell types at unprecedented resolution. We identify large, megabase-sized local chromatin interaction domains, which we term “topological domains”, as a pervasive structural feature of the genome organization. These domains correlate with regions of the genome that constrain the spread of heterochromatin. The domains are stable across different cell types and highly conserved across species, suggesting that topological domains are an inherent property of mammalian genomes. Lastly, we find that the boundaries of topological domains are enriched for the insulator binding protein CTCF, housekeeping genes, tRNAs, and SINE retrotransposons, suggesting that these factors may play a role in establishing the topological domain structure of the genome.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.