Abstract
We have studied a flocking model with binary interactions (binary flock), where the velocity of an agent depends on the velocity of only another agent and its own velocity, topped by the angular noise. The other agent is selected as the nth topological neighbor; the specific value of n being a fixed parameter of the problem. On the basis of extensive numerical simulation results, we argue that for n = 1, the phase transition from the ordered to the disordered phase of the flock is a special kind of discontinuous transition. Here, the order parameter does not flip-flop between multiple metastable states. It continues its initial disordered state for a period t(c), then switches over to the ordered state and remains in this state ever after. For n = 2, it is the usual discontinuous transition between two metastable states. Beyond this range, the continuous transitions are observed for n≥3. Such a system of binary flocks has been further studied using the hydrodynamic equations of motion. Linear stability analysis of the homogeneous polarized state shows that such a state is unstable close to the critical point and above some critical speed, which increases as we increase n. The critical noise strengths, which depend on the average correlation between a pair of topological neighbors, are estimated for five different values of n, which match well with their simulated values.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have