Abstract

BackgroundFeature matching technology is vital to establish the association between virtual and real objects in virtual reality and augmented reality systems. Specifically, it provides them with the ability to match a dynamic scene. Many image matching methods, of which most are deep learning-based, have been proposed over the past few decades. However, vessel fracture, stenosis, artifacts, high background noise, and uneven vessel gray-scale make vessel matching in coronary angiography extremely difficult. Traditional matching methods perform poorly in this regard. MethodsIn this study, a topological distance-constrained feature descriptor learning model is proposed. This model regards the topology of the vasculature as the connection relationship of the centerline. The topological distance combines the geodesic distance between the input patches and constrains the descriptor network by maximizing the feature difference between connected and unconnected patches to obtain more useful potential feature relationships. ResultsMatching patches of different sequences of angiographic images are generated for the experiments. The matching accuracy and stability of the proposed method is superior to those of the existing models. ConclusionsThe proposed method solves the problem of matching coronary angiographies by generating a topological distance-constrained feature descriptor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.