Abstract

BackgroundCo-salient object detection (Co-SOD) aims to identify and segment commonly salient objects in a set of related images. However, most current Co-SOD methods encounter issues with the inclusion of irrelevant information in the co-representation. These issues hamper their ability to locate co-salient objects and significantly restrict the accuracy of detection. MethodsTo address this issue, this study introduces a novel Co-SOD method with iterative purification and predictive optimization (IPPO) comprising a common salient purification module (CSPM), predictive optimizing module (POM), and diminishing mixed enhancement block (DMEB). ResultsThese components are designed to explore noise-free joint representations, assist the model in enhancing the quality of the final prediction results, and significantly improve the performance of the Co-SOD algorithm. Furthermore, through a comprehensive evaluation of IPPO and state-of-the-art algorithms focusing on the roles of CSPM, POM, and DMEB, our experiments confirmed that these components are pivotal in enhancing the performance of the model, substantiating the significant advancements of our method over existing benchmarks. Experiments on several challenging benchmark co-saliency datasets demonstrate that the proposed IPPO achieves state-of-the-art performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.