Abstract
We develop a unified framework to classify topological defects in insulators and superconductors described by spatially modulated Bloch and Bogoliubov de Gennes Hamiltonians. We consider Hamiltonians $\mathcal{H}(\mathbf{k},\mathbf{r})$ that vary slowly with adiabatic parameters $\mathbf{r}$ surrounding the defect and belong to any of the ten symmetry classes defined by time-reversal symmetry and particle-hole symmetry. The topological classes for such defects are identified and explicit formulas for the topological invariants are presented. We introduce a generalization of the bulk-boundary correspondence that relates the topological classes to defect Hamiltonians to the presence of protected gapless modes at the defect. Many examples of line and point defects in three-dimensional systems will be discussed. These can host one dimensional chiral Dirac fermions, helical Dirac fermions, chiral Majorana fermions, and helical Majorana fermions, as well as zero-dimensional chiral and Majorana zero modes. This approach can also be used to classify temporal pumping cycles, such as the Thouless charge pump, as well as a fermion parity pump, which is related to the Ising non-Abelian statistics of defects that support Majorana zero modes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.