Abstract

We study a three-dimensional (3D) classical Ising model that is exactly solvable when some coupling constants take certain imaginary values. The solution combines and generalizes the Onsager-Kaufman solution [L. Onsager, Phys. Rev. 65, 117 (1944); B. Kaufman, Phys. Rev. 76, 1232 (1949)] of the 2D Ising model and the solution of Kitaev's honeycomb model [A. Kitaev, Ann. Phys, 321, 2 (2006)], leading to a three-parameter phase diagram with a third-order phase transition between two distinct phases. Interestingly, the phases of this model are distinguished by topological features: the expectation value of a certain family of loop observables depend only on the topology of the loop (whether the loop is contractible), and are quantized at rational values that differ in the two phases. We show that a related exactly solvable 3D classical statistical model with real coupling constants also shows the topological features of one of these phases. Furthermore, even in the model with complex parameters, the partition function has some physical relevance, as it can be interpreted as the transition amplitude of a quantum dynamical process and may shed light on dynamical quantum phase transitions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.