Abstract

Here we show theoretically that a superposition of two Bessel-Gaussian (BG) beams with different topological charges (TC) and different scaling factors (radial components of the wave vectors) has the TC equal to that of the BG beam with the larger scaling factor. If the scaling factors of the BG beams are equal, then TC of the whole superposition equals TC of the BG beam with the larger (in absolute value) weight coefficient in the superposition (i.e. with larger power). If the constituent BG beams are also same-power, TC of the superposition equals the average TC of the two BG beams. Therefore, if the sum of TCs of both beams is odd, TC of the superposition is a half-integer number. In practice, however, TC is calculated over a finite radius circle and, hence, the half-integer TC for the degenerated case cannot be obtained. Instead of the half-integer TC, the lower of the two integer TCs is obtained. Numerical simulation reveals that if the weight coefficients in the superposition are slightly different, TC of the superposition is not conserved on propagation. In the near field and in the Fresnel diffraction zone, TC is equal to the highest TC of the two BG beams, while in the far field it is equal to the lower TC. What is more, TC changes its value from high to low not instantly, but continuously at some propagation distance. In the intermediate zone TC is fractional.

Highlights

  • topological charges (TC) is calculated over a finite radius circle and, the half-integer TC for the degenerated case cannot be obtained

  • Numerical simulation reveals that if the weight coefficients in the superposition are slightly different, TC of the superposition is not conserved on propagation

  • In the near field and in the Fresnel diffraction zone, TC is equal to the highest TC of the two BG beams, while in the far field it is equal to the lower TC

Read more

Summary

Расчет топологического заряда суммы двух пучков БГ

Пучок Бесселя–Гаусса в любой поперечной плоскости на расстоянии z имеет комплексную амплитуду вида [22]:. И так как аргумент функции Бесселя в (4) комплексный, то вместо (5) получим: q(z) 2 r z0. То есть какой ТЗ будет у суперпозиции двух пучков Бесселя–Гаусса, зависит от «конкуренции» масштабных коэффициентов α и β у функции Бесселя, независимо от амплитуды (E0, E1) каждого пучка. Действительно, если E0 = E1 и α = β, то суперпозиция двух пучков БГ (1) при больших r будет иметь амплитуду вида: E2 (r , , z) E0. И так как нулей (корней) функции Бесселя счетное число, такое чередование ТЗ (то n, то m) будет и при r , стремящемся к бесконечности. Бесселя с равными масштабными и весовыми коэффициентами (13) получается только при расчете его по окружности бесконечно большого радиуса. При расчете ТЗ (13) по окружности конечного радиуса ТЗ будет равен меньшему из двух чисел n или m.

Моделирование
Моделирование в случае примерного равенства весовых коэффициентов

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.