Abstract
Topological chaos may be used to generate highly effective laminar mixing in a simple batch stirring device. Boyland, Aref & Stremler (2000) have computed a material stretch rate that holds in a chaotic flow, provided it has appropriate topological properties, irrespective of the details of the flow. Their theoretical approach, while widely applicable, cannot predict the size of the region in which this stretch rate is achieved. Here, we present numerical simulations to support the observation of Boyland et al. that the region of high stretch is comparable with that through which the stirring elements move during operation of the device. We describe a fast technique for computing the velocity field for either inviscid, irrotational or highly viscous flow, which enables accurate numerical simulation of dye advection. We calculate material stretch rates, and find close agreement with those of Boyland et al., irrespective of whether the fluid is modelled as inviscid or viscous, even though there are significant differences between the flow fields generated in the two cases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.