Abstract
Topologically chaotic fluid advection is examined in two-dimensional flows with either or both directions spatially periodic. Topological chaos is created by driving flow with moving stirrers whose trajectories are chosen to form various braids. For spatially periodic flows, in addition to the usual stirrer-exchange braiding motions, there are additional topologically nontrivial motions corresponding to stirrers traversing the periodic directions. This leads to a study of the braid group on the cylinder and the torus. Methods for finding topological entropy lower bounds for such flows are examined. These bounds are then compared to numerical stirring simulations of Stokes flow to evaluate their sharpness. The sine flow is also examined from a topological perspective.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.