Abstract

Epileptic activity often arises after a latent period following traumatic brain injury. Several factors contribute to the emergence of post-traumatic epilepsy, including disturbances to ionic homeostasis, pathological action of intrinsic and synaptic homeostatic plasticity, and remodeling of anatomical network synaptic connectivity. We simulated a large-scale, biophysically realistic computational model of cortical tissue to study the mechanisms underlying the genesis of post-traumatic paroxysmal epileptic-like activity in the deafferentation model of a severely traumatized cortical network. Post-traumatic generation of paroxysmal events did not require changes of the structural connectivity. Rather, network bursts were induced following the action of homeostatic synaptic plasticity, which selectively influenced functionally dominant groups of intact neurons with preserved inputs. This effect critically depended on the spatial density of intact neurons. Thus in the deafferentation model of post-traumatic epilepsy, a trauma-induced change in functional (rather than anatomical) connectivity might be sufficient for epileptogenesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call