Abstract

Let P be a simple polygon, then the art gallery problem is looking for a minimum set of points (guards) that can see every point in P. We say two points a,b∈P\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$a,b\\in P$$\\end{document} can see each other if the line segment seg(a,b)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\ ext {seg}} (a,b)$$\\end{document} is contained in P. We denote by V(P) the family of all minimum guard placements. The Hausdorff distance makes V(P) a metric space and thus a topological space. We show homotopy-universality, that is, for every semi-algebraic set S there is a polygon P such that V(P) is homotopy equivalent to S. Furthermore, for various concrete topological spaces T, we describe instances I of the art gallery problem such that V(I) is homeomorphic to T.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call