Abstract
Given a simple polygon P on n vertices, two points x,y in P are said to be visible to each other if the line segment between x and y is contained in P. The Point Guard Art Gallery problem asks for a minimum set S such that every point in P is visible from a point in S. The Vertex Guard Art Gallery problem asks for such a set S subset of the vertices of P. A point in the set S is referred to as a guard. For both variants, we rule out a f(k)*n^{o(k/log k)} algorithm, for any computable function f, where k := |S| is the number of guards, unless the Exponential Time Hypothesis fails. These lower bounds almost match the n^{O(k)} algorithms that exist for both problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.