Abstract
We consider the dynamics of a nonautonomous dynamical system determined by a sequence of continuous self-maps \(f_n:X \rightarrow X,\) where \( n \in {\mathbb {N}},\) defined on a compact metric space X. Applying the theory of the Caratheodory structures, elaborated by Pesin (Dimension Theory in Dynamical Systems. Chicago Lectures in Mathematics. The University of Chicago Press, Chicago, 1997), we construct a Caratheodory structure whose capacity coincides with the topological entropy of the considered system. Generalizing the notion of local measure entropy, introduced by Brin and Katok (in: Palis (ed) Geometric Dynamics, Lecture Notes in Mathematics. Springer, Berlin 1983) for a single map, to a nonautonomous dynamical system we provide a lower and upper estimations of the topological entropy by local measure entropies. The theorems of the paper generalize results of Kawan (Nonautonomous Stoch Dyn Syst 1:26–52, 2013) and of Feng and Huang (J Funct Anal 263:2228–2254, 2012). Also, we construct a new entropy-like invariant such the entropy of a sequence \(\{f_n:X \rightarrow X\}_{n=1}^{\infty }\) of Lipschitz continuous maps with the same Lipschitz constant \(L >1,\) restricted to a subset \(Y\subset X,\) is upper bounded by Hausdorff dimension of Y multiplied by the logarithm of the Lipschitz constant L. This gives a generalizations of results of Dai et al. (Sci China Ser A 41:1068–1075, 1998) and Misiurewicz (Discret Contin Dyn Syst 10:827–833, 2004).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.