Abstract

A novel fabrication technique is described for the production of multimaterial, lithographically defined, topography-free samples for use in experiments to investigate the nature of contrast in scanning probe microscopy (SPM). The approach uses a flat sacrificial substrate as the base for fabrication, which is deleted in the final step. This leaves an exposed, flat surface with patterns of materials contrast defined during the lithography stages. In the example application presented, these are designed to challenge the detection ability of a scanning thermal microscopy (SThM) probe, although many other applications can be envisioned. There are many instances in SPM where images can exhibit topographically induced artifacts. In SThM, these can result in a change of the thermal signal which can easily be misinterpreted as changes in the sample thermal conductivity or temperature. The elimination of these artifacts through postprocessing requires a knowledge of how the probe responds thermal features of differing sizes. The complete sample fabrication process, followed by successful topographic/thermal scanning is demonstrated, showing sub-1.5 nm topography with a clear artifact-free thermal signal from sub-100 nm gold wires. The thermal spatial resolution is determined for the sample materials and probe used in this study to be in the range of 35–75 nm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call