Abstract
The mobility of a fakir state droplet on a structured surface is fundamentally determined by the effective length of a microscopic contact line. However, it is largely unknown how the surface topography determines the effective contact line length. Based on the direct measurement of droplet adhesion force and the visualization of contact line, this work shows that effective contact line length is topography dependent as opposed to prior notion. On pored surfaces, contact line is not distorted, and the effective length approaches the droplet apparent perimeter regardless of pore dimensions. On pillared surfaces, the distortion of contact line is significantly dependent on the packing density of the pillar structures so that the effective length is as small as a pillar diameter on densely packed pillars and as large as a pillar perimeter on sparsely-packed pillars, while changing linearly between the two extremes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.