Abstract

In addition to transient conduction, microconvection, and microlayer evaporation, contact line region heat transfer has been identified as an important mode of heat transfer during boiling. In this work, we demonstrate that generating additional contact line regions within the base of a nucleating bubble leads to critical heat flux (CHF) enhancement. The creation of a liquid meniscus adjacent to 10–20 μm deep microgrooves in the bubble base area was responsible for the generation of the additional contact line regions. The depth of the microgrooves was determined such that a sufficient reservoir of liquid is present in the meniscus to sustain evaporation in the contact line region throughout the bubble cycle. The effective contact line length at the base of the bubble was seen to be a good indicator of the CHF (wetted area) over the surface. The microgroove geometry played a significant role in influencing the bubble dynamics and bubble departure diameter during boiling. It was seen that the bubbles were able to bridge and grow over the shallow microgrooves of 10–20 μm depth and generate additional contact line regions but were pinned and constrained within the grooves in the case of the microgrooves deeper than 100 μm. For shallow grooves, narrow grooves resulted in smaller bubbles, which in turn reduced the contact line length. The findings of this work could be used to design heat transfer surfaces that significantly enhance the contact line region contribution and CHF by placing shallow enhancement features on the surface of the heater.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.