Abstract

Abstract. Digital elevation models (DEMs) representing topography are an essential input for computational models capable of simulating the run-out of flow-like landslides. Yet, DEMs are often subject to error, a fact that is mostly overlooked in landslide modeling. We address this research gap and investigate the impact of topographic uncertainty on landslide run-out models. In particular, we will describe two different approaches to account for DEM uncertainty, namely unconditional and conditional stochastic simulation methods. We investigate and discuss their feasibility, as well as whether DEM uncertainty represented by stochastic simulations critically affects landslide run-out simulations. Based upon a historic flow-like landslide event in Hong Kong, we present a series of computational scenarios to compare both methods using our modular Python-based workflow. Our results show that DEM uncertainty can significantly affect simulation-based landslide run-out analyses, depending on how well the underlying flow path is captured by the DEM, as well as on further topographic characteristics and the DEM error's variability. We further find that, in the absence of systematic bias in the DEM, a performant root-mean-square-error-based unconditional stochastic simulation yields similar results to a computationally intensive conditional stochastic simulation that takes actual DEM error values at reference locations into account. In all other cases the unconditional stochastic simulation overestimates the variability in the DEM error, which leads to an increase in the potential hazard area as well as extreme values of dynamic flow properties.

Highlights

  • Landslides are natural hazards that occur frequently all around the world causing casualties, economic devastation, and environmental destruction

  • Our results show that Digital elevation models (DEMs) uncertainty can significantly affect simulation-based landslide run-out analyses, depending on how well the underlying flow path is captured by the DEM, as well as on further topographic characteristics and the DEM error’s variability

  • In all other cases the unconditional stochastic simulation overestimates the variability in the DEM error, which leads to an increase in the potential hazard area as well as extreme values of dynamic flow properties

Read more

Summary

Introduction

Landslides are natural hazards that occur frequently all around the world causing casualties, economic devastation, and environmental destruction. Most often, they are naturally driven, e.g., by means of long-lasting and/or intensive precipitation events or induced by earthquakes. According to the United Nations Office for Disaster Risk Reduction and the Centre for Research on the Epidemiology of Disasters, 378 recorded landslides from 1998 to 2017 affected 4.8 million people and caused 18 414 deaths as well as several billion US dollars of economic losses (Wallemacq et al, 2018). Froude and Petley (2018) reported that in total 55 997 people were killed during 4862 fatal nonseismic landslide events from January 2004 to December 2016. It has to be assumed that the damage potential of landslides is underestimated as (1) events have been underreported for decades, especially in developing countries, and (2) losses caused by coseismic landslide events tend to be classified as secondary losses due to earthquakes

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call