Abstract

We employed the top-seeded infiltration-growth (IG) process for the fabrication of bulk (Y, Gd)Ba2Cu3Oy (YG-123) superconductors by varying the composition of (Y, Gd)2BaCuO5 (YG-211) and compared with bulk YBa2Cu3Oy (Y-123) superconductors grown under similar conditions. IG-processed YG-123 exhibited Jc (77 K) of 4.78 × 104 A cm−2 in zero field, which was higher than the value of 3.71 × 104 A cm−2 for Y-123. The superconducting transition temperature (Tc) of YG-123 increased with increasing Gd content. However, there was spatial variation in the superconducting properties of IG-processed YG-123 samples due to the inhomogeneous distribution of YG-211. Jc values of YG-123 decreased when increasing the distance from the seed both along the a and c-axis directions. The scaling studies of the pinning behavior for YG-123 showed that non-superconducting YG-211 particles act as effective pinning centers, supported by the fact that δTc type pinning is active in the system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call