Abstract

We report on the experimental investigation of optical coupling for superconducting microresonators known as microwave kinetic inductance detectors (MKIDs) in the visible and near-infrared bands. MKIDs are photon-counting, time and energy-resolving detectors that still suffer from a poor quantum efficiency. To improve this efficiency, we propose to add a superconducting reflective layer below the absorbing part of the detector separated by a transparent Al2O3 layer with a quarter-wavelength thickness optimized around a single wavelength λ = 405 nm. We have first fabricated samples patterned from stoichiometric TiN ( Tc∼4 K), one with the full optical stack, one without for reference and one with a partial optical stack in order to characterize the noise influence of each layer individually. We observe that the full optical stack geometry has the most impact on the resonator’s noise and quality factors. A second design was fabricated to characterize the optical response to short pulses of the optical stack and we show from both the frequential noise and optical response that a strong signature of TLS is still present in the optical stack sample. We have finally obtained single-photon response with the optical stack using a more sensitive tri-layer TiN/Ti/TiN absorber ( Tc∼1.3 K) for which a maximum energy resolving power of R=E/ΔE∼ 1.3 was achieved using 405 nm laser pulses at 225 mK. The quality factors of both the reference and optical stack samples are similar but the frequency noise is still a tenfold higher for the optical stack sample which degrades the energy-resolving power of the detector.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.