Abstract

In recent years, binary coding methods have become increasingly popular for tasks of searching approximate nearest neighbors (ANNs). High-dimensional data can be quantized into binary codes to give an efficient similarity approximation via a Hamming distance. However, most of existing schemes consider the importance of each binary bit as the same and treat training samples at different positions equally, which causes many data pairs to share the same Hamming distance and a larger retrieval loss at the top position. To handle these problems, we propose a novel method dubbed by the top-position-sensitive ordinal-relation-preserving bitwise weight (TORBW) method. The core idea is to penalize data points without preserving an ordinal relation at the top position of a ranking list more than those at the bottom and assign different weight values to their binary bits according to the distribution of query data. Specifically, we design an iterative optimization mechanism to simultaneously learn binary codes and bitwise weights, which makes their learning processes related to each other. When the iterative procedure converges, the binary codes and bitwise weights are effectively adapted to each other. To reduce the training complexity, we relax the discrete constraints of both the binary codes and the indicator function. Furthermore, we pretrain a tensor ordinal graph to decrease the time consumption of computing a relative similarity relationship among data points. Experimental results on three large-scale ANN search benchmark datasets, i.e., SIFT1M, GIST1M, and Cifar10, show that the proposed TORBW method can achieve superior performance over state-of-the-art approaches.

Highlights

  • With the rapid development of massive image collections, it has been challenging to search for visually relevant images effectively and efficiently [1,2]

  • We first encode floating data into 32, 64, and 128-bit binary codes by the hash methods (TORBW, locality-sensitive hashing (LSH) [7], anchor graph hashing (AGH) [8], k-means hashing (KMH) [9], Top-RSBC [25], and ordinal constraint hashing (OCH) [1]) and achieve approximate nearest neighbors (ANNs) search tasks according to Hamming distances

  • We propose a novel method dubbed as the top-position-sensitive ordinal-relation-preserving bitwise weight (TORBW) method, which simultaneously generates hash functions and bitwise weight functions

Read more

Summary

Introduction

With the rapid development of massive image collections, it has been challenging to search for visually relevant images effectively and efficiently [1,2]. In contrast to commonly used methods that exhaustively search for the most similar images in one high-dimensional space, hashing methods map floating point data into binary codes and achieve tasks of searching approximate nearest neighbors (ANNs) using Hamming distances. Hashing methods can accelerate ANN search procedures and save on storage. The pioneering method, locality-sensitive hashing (LSH) [7], randomly generates linear hashing functions and computes binary codes based on projection signs. The learning process is independent of training samples, and the performance cannot obviously improve as the number of binary bits increases [8]. To fix the above problem, many data-dependent hashing algorithms have been proposed to preserve training samples’ similarity relationships in Hamming spaces.

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call