Abstract

Due to its compact binary codes and efficient search scheme, image hashing method is suitable for large-scale image retrieval. In image hashing methods, Hamming distance is used to measure similarity between two points. For K-bit binary codes, the Hamming distance is an int and bounded by K. Therefore, there are many returned images sharing the same Hamming distances with the query. In this paper, we propose two efficient image ranking methods, which are distance weights based reranking method (DWR) and bit importance based reranking method (BIR). DWR method aim to rerank PCA hash codes. DWR averages Euclidean distance of equal hash bits to these bits with different values, so as to obtain the weights of hash codes. BIR method is suitable for all type of binary codes. Firstly, feedback technology is adopted to detect the importance of each binary bit, and then big weights are assigned to important bits and small weights are assigned to minor bits. The advantage of this proposed method is calculation efficiency. Evaluations on two large-scale image data sets demonstrate the efficacy of our methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.