Abstract

Plant performance is influenced by both top-down (e.g., herbivores) and bottom-up (e.g., soil nutrients) controls. Research investigating the collective effects of such factors may provide important insight into the success and management of invasive plants. Through a combination of observational and experimental field studies, we examined top-down and bottom-up effects on the growth and reproduction of an invasive plant, Linaria dalmatica. First, we assessed attack levels and impacts of an introduced biocontrol agent, the stem-mining weevil Mecinus janthinus, on L. dalmatica plants across multiple years and sites. Then, we conducted a manipulative experiment to examine the effects of weevil attack, soil nitrogen availability, and interspecific competition on L. dalmatica. We found substantial variations in weevil attack within populations as well as across sites and years. Observational and experimental data showed that increased weevil attack was associated with a reduction in plant biomass and seed production, but only at the highest levels of attack. Nitrogen addition had a strong positive effect on plant performance, with a two-fold increase in biomass and seed production. Clipping neighboring vegetation resulted in no significant effects on L. dalmatica performance, suggesting that plants remained resource limited or continued to experienced belowground competitive effects. Overall, our research indicates that M. janthinus can exert top-down effects on L. dalmatica; however, weevil densities and attack rates observed in this study have not reached sufficient levels to yield effective control. Moreover, bottom-up controls, in particular, soil nitrogen availability, may have a large influence on the success and spread of this invasive plant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call