Abstract

Current LHC results indicate a possible enhancement in the production of Higgs bosons in association with top quarks (tth) over the Standard Model (SM) expectations, suggesting an increase in the top Yukawa coupling. To explain these results, we study the effect of adding to the SM a small set of vector-like partners of the top and bottom quarks with masses of order ~1 TeV. We consider Yukawa coupling matrices with vanishing determinant and show that then, Higgs production through gluon fusion is not affected by deviations in the top quark Yukawa coupling, and in fact depends only on deviations in the bottom quark Yukawa coupling. We call this scenario the "Brane Higgs Limit", as it can emerge naturally in models of warped extra-dimensions with all matter fields in the bulk, except the Higgs (although it could also occur in 4D scenarios with vector-like quarks and special flavor symmetries forcing the vanishing of the Yukawa determinants). We show that the scenario is highly predictive for all Higgs production/decay modes, making it easily falsifiable, maybe even at the LHC RUN 2 with higher luminosity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.