Abstract

We present the key elements required for continuous variable parallel quantum information protocols based on spatial multimode quantum correlations. We describe techniques for encoding, combining and detecting spatial quantum information with high efficiency in the individual transverse modes. Until now, the missing feature for the implementation of such protocols was the generation of squeezing in higher order transverse Hermite-Gauss modes. We experimentally demonstrate squeezing in selective modes by fine-tuning the phase matching condition of the nonlinear chi(2) material and the cavity resonance condition of an optical parametric amplifier. Combined, these results open the way to practical multimode optical quantum information systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.