Abstract
Summary The number of entries in the sequence databases continues to increase exponentially – the UniProt database is increasing with a doubling time of ∼4 years (2% increase/month). Approximately 50% of the entries have uncertain, unknown, or incorrect function annotations because these are made by automated methods based on sequence homology. If the potential in complete genome sequences is to be realized, strategies and tools must be developed to facilitate experimental assignment of functions to uncharacterized proteins discovered in genome projects. The Enzyme Function Initiative (EFI; previously supported by U54GM093342 from the National Institutes of Health, now supported by P01GM118303) developed web tools for visualizing and analyzing (1) sequence and function space in protein families (EFI-EST) and (2) genome neighbourhoods in microbial and fungal genomes (EFI-GNT) to assist the design of experimental strategies for discovering the in vitro activities and in vivo metabolic functions of uncharacterized enzymes. The EFI developed an experimental platform for large-scale production of the solute binding proteins (SBPs) for ABC, TRAP, and TCT transport systems and their screening with a physical ligand library to identify the identities of the ligands for these transport systems. Because the genes that encode transport systems are often co-located with the genes that encode the catabolic pathways for the transported solutes, the identity of the SBP ligand together with the EFI-EST and EFI-GNT web tools can be used to discover new enzyme functions and new metabolic pathways. This approach is demonstrated with the characterization of a novel pathway for ethanolamine catabolism.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have