Abstract

Hybrid lubri-cooling is a latest technology that provides synergistic cooling and lubrication effect in the machining area especially in the cutting of titanium and its alloys. In this current study, cryogenic-LN2, minimum quantity lubrication (MQL), and hybrid cryogenic LN2-MQL are applied and compared against dry medium in perspective of in-depth analysis of tool flank wear, EDS mapping, and intensity of tool wear. Experimental results showed that in comparison with dry, hybrid LN2-MQL substantially reduced the tool flank and rake wear followed by LN2, MQL, and dry conditions, respectively. Additionally, the SEM and EDS analysis depicted relatively less severe wear and chemical elements adhesion on the tool’s main cutting edge, while turning titanium alloy under a hybrid LN2-MQL lubri-cooling environment. In addition, the dry condition has maximum value of tool wear progressions i.e., 1.04 mm and hybrid LN2-MQL have 0.06 mm while machining titanium alloys. When tool wear is evaluated from a tribological point of view, the reduction in flank wear value compared to dry machining is 89.4 %, 92.3 % and 94.2 % owing to MQL, LN2, MQL and hybrid LN2-MQL cutting strategies. In terms of crater wear, the improvement was 87.7 %, 90.4 % and 90.8 % thanks to MQL, LN2, MQL and hybrid LN2-MQL.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call